Галактика андромеды. ближайшая к млечному пути
Содержание:
Размеры Солнца и другие числа
Солнце – это молодая звезда третьего поколения, она являет собой желтого карлика. Диаметр Солнца в километрах составляет приблизительно 1.392.000.000 км (примерно 109 диаметров Земли), весом 1,9885·кг (около 322940 масс Земли).
Чтобы узнать радиус Солнца в километрах, необходимо его диаметр разделить на два. Образовалось оно из останков небесных тел предыдущих поколений. Приблизительный возраст равен 4,57 миллиарда лет, то есть сейчас оно находится на середине своей жизни.
Солнце можно охарактеризовать, как источник энергии и жизни на Земле. В будущем, оно же станет и причиной исчезновения голубой планеты.
Радиус Солнца в течение тысячелетий может как увеличиваться, так и уменьшаться, в зависимости от реакций, протекающих на поверхности.
Состав
В состав небесного светила в основном входят:
- водород 74,9%;
- гелий 23,8%.
Все остальные элементы – металлы, они составляют менее 2% от общего веса. Свой состав солнце унаследовало от межзвёздной среды, в которой оно образовалось. Ядро простирается от центра примерно на 20-25% до его радиуса. Температура в ядре около 15,7 миллионов Кельвинов, а на поверхности приблизительно 5800 Кельвинов.
Мощность
1368 Вт энергии на 1 квадратный метр1000 Вт на метр квадратный
Солнечный свет в верхней части атмосферы Земли состоит на 50% из инфракрасного света, 40% видимого и 10% ультрафиолетового.
Атмосфера отфильтровывает более 70% ультрафиолета.
Расстояние
Многим людям интересно, сколько километров от нашей планеты до светила. Расстояние от Земли до Солнца непостоянно. Оно варьируется от 147 до 152 миллионов километров по причине вытянутости орбиты Земли. Самое короткое расстояние называется «перигелий», Земля находится в нём с 2 по 5 января, а самое длинное «афелий» – с 2 по 5 июля. В течение года наша планета перемещается от одной точки в другую. И так по кругу. Эти незначительные изменения никак не влияют на климат на Земле. Ученые знают, как определить расстояние до Солнца в любое время года. Для этого существуют специальные формулы.
Внимание! Удаленность от Солнца ближайшей планеты Меркурий составляет 58 млн. км.. Диаметр Солнца в километрах, как и другие расстояния в масштабах космоса, измерять не всегда удобно
Существуют и другие единицы измерения космического пространства. Так в световых годах, время прохождения света от Солнца до Земли составляет около 8 минут 20 секунд. То есть, глядя на Солнце мы видим его таким, каким оно было 8 минут назад. Световой же год – это расстояние, которое луч света проходит за тропический год
Диаметр Солнца в километрах, как и другие расстояния в масштабах космоса, измерять не всегда удобно. Существуют и другие единицы измерения космического пространства. Так в световых годах, время прохождения света от Солнца до Земли составляет около 8 минут 20 секунд. То есть, глядя на Солнце мы видим его таким, каким оно было 8 минут назад. Световой же год – это расстояние, которое луч света проходит за тропический год.
Ракеты на ядерном синтезе
Другая возможность использования ядерной энергии заключается в термоядерных реакциях для получения тяги. В рамках этой концепции, энергия должна создаваться во время воспламенения гранул смеси дейтерия и гелия-3 в реакционной камере инерционным удержанием с использованием электронных лучей (подобно тому, что делают в Национальном комплексе зажигания в Калифорнии). Такой термоядерный реактор взрывал бы 250 гранул в секунду, создавая высокоэнергетическую плазму, которая затем перенаправлялась бы в сопло, создавая тягу.
Проект «Дедал» так и не увидел свет
Подобно ракете, которая полагается на ядерный реактор, эта концепция обладает преимуществами с точки зрения эффективности топлива и удельного импульса. По оценке, скорость должна достигать 10 600 км/ч, что намного превышает пределы скорости обычных ракет. Более того, эта технология активно изучалась в течение последних нескольких десятилетий, и было сделано много предложений.
Например, между 1973 и 1978 годами Британское межпланетное общество провело исследование возможности проекта «Дедал». Опираясь на современные знания и технологии термоядерного синтеза, ученые призвали к строительству двухступенчатого беспилотного научного зонда, который смог бы добраться до звезды Барнарда (5,9 светового года от Земли) за срок человеческой жизни.
Первая ступень, крупнейшая из двух, работала бы в течение 2,05 года и разогнать аппарат до 7,1% скорости света. Затем эта ступень отбрасывается, зажигается вторая, и аппарат разгоняется до 12% скорости света за 1,8 года. Потом двигатель второй ступени отключается, и корабль летит в течение 46 лет.
Согласитесь, выглядит очень красиво!
По оценкам проекта «Дедал», миссии потребовалось бы 50 лет, чтобы достичь звезды Барнарда. Если к Проксиме Центавра, то же судно доберется за 36 лет. Но, конечно, проект включает массу нерешенных вопросов, в частности неразрешимых с использованием современных технологий — и большинство из них до сих пор не решены.
К примеру, на Земле практически нет гелия-3, а значит, его придется добывать в другом месте (вероятнее всего, на Луне). Во-вторых, реакция, которая движет аппарат, требует, чтобы испускаемая энергия значительно превышала энергию, затраченную на запуск реакции. И хотя эксперименты на Земле уже превзошли «точку безубыточности», мы еще далеки от тех объемов энергии, что смогут питать межзвездный аппарат.
В-третьих, остается вопрос стоимости такого судна. Даже по скромным стандартам беспилотного аппарата проекта «Дедал», полностью оборудованный аппарат будет весить 60 000 тонн. Чтобы вы понимали, вес брутто NASA SLS чуть выше 30 метрических тонн, и один только запуск обойдется в 5 миллиардов долларов (по оценкам 2013 года).
Короче говоря, ракету на ядерном синтезе будет не только слишком дорого строить, но и потребуется уровень термоядерного реактора, намного превышающий наши возможности. Icarus Interstellar, международная организация гражданских ученых (некоторые из которых работали в NASA или ЕКА), пытается оживить концепцию с проектом «Икар». Собранная в 2009 году группа надеется сделать движение на синтезе (и другое) возможным в обозримом будущем.
Какая звезда является ближайшей
Ближе всего к Земле расположена звезда Проксима Центавра, так что пока следует строить свои расчеты на основе ее характеристик. Входит в состав тройной системы Альфа Центавра и отдалена от нас на расстояние 4.24 световых лет. Это изолированный красный карлик, расположенный в 0.13 световых лет от двойной звезды.
Вид на Проксиму Центавра с поверхности потенциальной экзопланеты. Иллюстрация глазами художника
Как только всплывает тема межзвездных путешествий, все тут же вспоминают о скорости деформации и прыжках в червоточины. Но все они либо пока недостижимы, либо абсолютно невозможны. К сожалению, на любую дальнюю миссию уйдет не одно поколение. Начнем разбор с самых медленных способов.
Европа
Сколько лететь до Болгарии
Бургас
- Время перелета Москва — Бургас: 2 часа 5 минут
- Время перелета Санкт-Петербург — Бургас: 3 часа
- Время перелета Екатеринбург — Бургас: 4 часа
- Время перелета Казань — Бургас: 3 часа 30 минут
- Время перелета Самара — Бургас: 3 часа
- Время перелета Ростов-на-Дону — Бургас: 2 часа
- Время перелета Нижний Новгород — Бургас: 4 часа
- Время перелета Уфа — Бургас: 4 часа
- Время перелета Пермь — Бургас: 4 часа 20 минут
- Время перелета Волгоград — Бургас: 3 часа
- Время перелета Челябинск — Бургас: 4 часа 40 минут
- Время перелета Белгород — Бургас: 3 часа 20 минут
- Время перелета Оренбург — Бургас: 3 часа 50 минут
София
Время перелета Москва — София: 3 часа 20 минут
Сколько лететь до Греции
Крит
- Время перелета Москва — Крит: 3 часа 45 минут
- Время перелета Санкт-Петербург — Крит: 4 часа
- Время перелета Екатеринбург — Крит: 5 часов
- Время перелета Ростова-на-Дону — Крит: 3 часа
- Время перелета Новосибирск — Крит: 6 часов 30 минут
- Время перелета Уфа — Крит: 4 часа 45 минут
- Время перелета Казань — Крит: 4 часов 30 минут
- Время перелета Самара — Крит: 4 часа
- Время перелета Пермь — Крит: 5 часов 30 минут
- Время перелета Нижний Новгород — Крит: 3 часа 30 минут
- Время перелета Краснодар — Крит: 3 часа
Родос
- Время перелета Москва — Родос (Диагорас): 3 часа 30 минут
- Время перелета Санкт-Петербург — Родос (Диагорас): 3 часа 40 минут
- Время перелета Екатеринбург — Родос (Диагорас): 4 часа 30 минут
- Время перелета Уфа — Родос: 4 часа
- Время перелета Краснодар — Родос: 2 часа 10 минут
- Время перелета Самара — Родос: 4 часа
Салоники
- Время перелета Москва — Салоники: 3 часа 5 минут
- Время перелета Санкт-Петербург — Салоники: 3 часа 25 минут
Сколько лететь до Испании
Тенерифе
- Время перелета Москва — Тенерифе: 7 часов 15 минут
- Время перелета Санкт-Петербург — Тенерифе: 7 часов
- Время перелета Екатеринбург — Тенерифе: 9 часов
- Время перелета Ростов-на-Дону — Тенерифе: 4 часа
- Время перелета Новосибирск — Тенерифе: 10 часов
Барселона
- Время перелета Москва — Барселона: 4 часа 30 минут
- Время перелета Санкт-Петербург — Барселона: 4 часа
- Время перелета Екатеринбург — Барселона: 6 часов 20 минут
Пальма-де-Майорка
- Время перелета Екатеринбург — Пальма-де-Майорка: 6 часов
- Время перелета Санкт-Петербург — Пальма-де-Майорка: 4 часа
Сколько лететь до Кипра
- Время перелета Москва — Ларнака: 2 часа 55 минут
- Время перелета Санкт-Петербург — Ларнака: 4 часа 40 минут
- Время перелета Екатеринбург — Ларнака: 4 часа 30 минут
- Время перелета Самара — Ларнака: 3 часа 30 минут
- Время перелета Казань — Ларнака: 4 часа
- Время перелета Нижний Новгород — Ларнака: 3 часа 30 минут
- Время перелета Уфа — Ларнака: 4 часа
- Время перелета Ростов-на-Дону — Ларнака: 2 часа
- Время перелета Пермь — Ларнака: 4 часа
- Время перелета Челябинск — Ларнака: 4 часа 30 минут
- Время перелета Новосибирск — Ларнака: 6 часов
- Время перелета Краснодар — Ларнака: 2 часа 20 минут
- Время перелета Тюмень — Ларнака: 5 часов
- Время перелета Воронеж — Ларнака: 3 часа
Сколько лететь до Праги
- Время перелета Москва — Прага: 2 часа 45 минут
- Время перелета Санкт-Петербурга — Прага: 2 часа 30 минут
- Время перелета Екатеринбург — Прага: 4 часа 45 минут
- Время перелета Ростов-на-Дону — Прага: 3 часа 30 минут
- Время перелета Новосибирск — Прага: 6 часов 40 минут
Сколько лететь до Стамбула
- Время перелета Москва — Стамбул: 3 часа 5 минут
- Время перелета Санкт-Петербург — Стамбул: 3 часа 30 минут
- Время перелета Екатеринбург — Стамбул: 7 часов 20 минут
- Время перелета Москва — Тиват: 3 часа 10 минут
- Время перелета Санкт-Петербург — Тиват: 2 часа 20 минут
Рейсы с пересадками
Из большинства городов России нет прямых рейсов во Владивосток. Если вы планируете перелет из уральских и сибирских регионов, то, удобнее всего, делать пересадку в Новосибирске или Иркутске — из этих городов рейсы во Владивосток отправляются почти каждый день. У перевозчика S7 есть удобные стыковочные рейсы с минимальным временем нахождения в аэропорту Новосибирска.
Путешественники, отправляющиеся во Владивосток из городов российского юга, Поволжья и Центральной России, предпочитают делать пересадку в московском Шереметьево. Но, если ваш город и Новосибирск связывают прямые рейсы, то стоит рассмотреть и этот вариант — иногда стыковка в Сибири значительно экономит затраченное на перелет время.
Москвичи тоже нередко летают с пересадкой. Это связано с высокой стоимостью прямых рейсов и, иногда, отсутствием билетов на ближайшие дни. Чаще всего из Москвы летают с пересадкой в Новосибирске, Хабаровске или Южно-Сахалинске. Время полета до Владивостока в этом случае увеличивается до 12–16 часов и более, в зависимости от продолжительности пересадки.
Фото: Елена Шишкова
Траектории полета
Стоит понимать, что Солнечная система обладает большим количеством гравитационных точек, поэтому запускать какие-либо объекты по прямой не представляется возможным. Необходимо максимально избегать притяжения Солнца, которое может запросто притянуть любой объект запущенный с Земли и уничтожить его. Поэтому были разработаны определенные траектории, по которым возможен полет до Красной планеты. Существует несколько основных путей, как добраться до Марса.
Траектории полета на Марс
Гомановская траектория
Этот метод заключается в запуске объекта навстречу небесному телу. Такой способ был разработан немецким инженером Вальтером Гоманом, который предложил отправлять аппараты против движения планеты. Но у данной траектории есть один значительный минус — требуется большое количество топлива для торможения.
Баллистический захват
Баллистический захват — это второй метод, который предлагает запуск аппаратов прямо по орбите Марса опять же навстречу движению, а торможение будет происходить за счет атмосферы. Такой метод требует больше времени для реализации.
Торможение атмосферой
Параболическая траектория
Параболическая траектория — самый сложный по техническим требованиям маршрут, но на его преодоление уйдет всего 80 дней. Такой метод потребует от космического корабля разогнаться до 16,7км/с, что равняется третьей космической скорости. Подобный маневр потребует в 4 раза больше топлива, чем первый метод, но из-за резкого сокращения времени путешествия сэкономить можно на питании и на средствах жизнеобеспечения экипажа.
Местная Группа — часть космической паутины
Ближайшее скопление галактик к Местной Группе — это скопление Девы, которое находится от нас на расстоянии около 55 миллионов световых лет. В скоплении Девы насчитывается более 2,000 «островных вселенных». Сравните это с Местной Группой, в которую, согласно подтвержденным данным, входит около 50 галактик, а по неподтвержденным — еще 30. При этом, размер большинства галактик Местной Группы не сопоставим с размером Млечного Пути и Галактики Андромеды. Однако и это еще не все — Местная Группа — лишь малая, периферийная часть сверхскопления галактик, которое в общей сложности насчитывает больше тысячи самых разных галактик. Вместе эти сверхскопления образуют гигантскую но далеко не единственную субструктуру Вселенной. Чувствуете себя маленькими?
Перед вами часть галактик Местной Группы
Как пишет издание Astronomy, большинство галактик, составляющих космическую паутину — сеть сверхскоплений галактик — существуют в небольших группах, которые разбросаны по всему космосу. Исследователи полагают, что галактики Местной Группы возникли более 13 миллиардов лет назад, когда первые скопления вещества разрослись в протогалактики. Спустя миллиард лет после Большого Взрыва, когда сформировались звезды, Местная Группа растянулась на 600 000 световых лет. Дело в том, что будучи близко друг к другу, галактики в то время объединялись чаще. Не исключено, что подобные слияния могли создать Млечный Путь из 100 или более протогалактик.
Спутники Млечного Пути — Большое и Малое Магеллановы Облака — находятся от нас на расстоянии 163 тысяч световых лет. Это карликовые галактики, которые Млечный Путь поглотит в будущем. В этом нет ничего удивительного, так как наша галактика прямо сейчас уничтожает и пожирает сфероидальную карликовую галактику Стрельца. Кроме того, примерно через 4 миллиарда лет Галактика Андромеды и Млечный Путь столкнутся в результате образовав новую, большую галактику, которая в конечном итоге станет гигантской эллиптической галактикой.
Большое и Малое Магеллановы Облака
Учитывая тот факт, что наблюдения астрономов ограничены наблюдаемой Вселенной, изучение галактик Местной Группы и ближайшего к ней скопления Девы позволяет ученым увидеть микромир — своего рода лабораторию или мини Вселенную. Вещество, которое астрономы называют темной материей, составляет 26% от всего вещества во Вселенной, но пока никто не знает, что она из себя представляет. Используя технику, называемую гравитационным линзированием, астрономы изучили ореол Млечного Пути и исключили нескольких предполагаемых кандидатов. Точно так же ученые используют ближайшие галактики, чтобы изучить, где образуются черные дыры. Так или иначе, эволюция галактик и процесс звездообразования, позволяет ученым узнать больше не только о нашей собственной галактике, но и обо всей Вселенной.
Как рассчитывается расстояние до красной планеты в километрах
Минимальное расстояние от Земли до Марса (53 млн км) было в 2003 году (подобное сближение в следующий раз будет только через 50 тыс. лет). Один раз в два года расстояние между планетами сокращается до 54,6 млн км. Это стандартное минимальное расстояние между Землёй и Марсом. Максимально же возможным расстоянием учёные считают 401 млн км. Среднее расстояние между Землёй и Марсом составляет 225 млн км.
Как рассчитывается время полёта на Красную планету
Скорее всего, пилотируемый космический аппарат будет запущен на Марс именно при нахождении планет на минимальном расстоянии друг от друга. При расчёте длительности полёта в данном случае будет приниматься старт космического корабля в период оптимального взаимного расположения планет и время его полёта до Марса. В этом случае предполагается, что космонавты будут находиться в пути на Красную планету минимум шесть и максимум семь месяцев. Итого, дорога в одну сторону займёт от 180 до 210 дней.
Но не всё так просто. Приведённые выше расчёты являются теоретическими, а время полёта — средним. Не следует забывать и о возвращении космонавтов на Землю. Старт космического корабля с Земли на Марс, конечно, без особых проблем может быть осуществлён в оптимальный период взаимного расположения планет. А вот для возвращения на Землю придётся ждать следующего периода, когда Марс и Земля будут наиболее близки друг к другу. А этот период составляет 18 месяцев. К этому времени следует добавить минимум полугодовой период возвращения с Марса на Землю. В итоге мы получаем два с половиной года. Именно столько при благоприятном стечении обстоятельств займёт время полёта пилотируемого космического корабля на Марс от момента его старта до возвращения модуля с космонавтами на Землю.
На практике пилотируемых полётов на Марс пока ещё не было. Например, американская автоматическая исследовательская станция «Кьюриосити» летела на Марс по гомановской траектории с 26.11.2011 по 06.08.2012. Как видим, на полёт ушло чуть более восьми месяцев. А ещё в 1964 году тоже американский Mariner-4 проделал путь от нашей планеты до Красной за время, превышающее семь месяцев (28.11.1964 – 14.07.1965).
Автоматическая станция «Кьюриосити» высадила марсоход на Красной планете почти через восемь месяцев
Расчёт времени полёта космонавтов на Марс является одной из ключевых задач при разработке проекта пилотируемой космической экспедиции на Красную планету. От этого зависит количество пищи, топлива, ёмкость аккумуляторов, запасы кислорода и так далее. Ошибка может обойтись очень дорого
Также очень важно правильно рассчитать траекторию. Ведь Земля и Марс не находятся в статическом состоянии, постоянно двигаясь по своим орбитам
Запуск ракеты из точки А, находящейся на Земле, в точку B на Марсе необходимо делать с учётом опережения. Ведь за время полёта Марс значительно увеличит расстояние с нашей планетой, продолжая двигаться по своей орбите.
Сколько лететь до Марса от Луны
Полёт от Земли до Луны занимает около трёх дней. По времени полёт от Луны до Марса будет короче на три дня. Но это снова теория. На практике же лунный старт позволит значительно уменьшить затратность самого полёта, снизить вес космического аппарата за счёт меньшего количества топлива. Вторая космическая скорость для Луны составляет «всего» 2,4 км/с земными 11,2 км/с.
Соответственно, потребуются гораздо меньшие усилия для выхода из гравитационного поля космического тела (в данном случае — Луны). Но пока что лунный старт относится к области теоретических разработок. Между лунным стартом космического корабля на Марс и сегодняшним положением вещей отсутствует одно звено — невозможность старта с лунной поверхности ввиду отсутствия на спутнике Земли соответствующего стартового комплекса.
Длительность полёта от Луны до Марса принципиально не отличается от длительности полёта на Марс с Земли. Но старт пилотируемого космического комплекса с Луны позволит гораздо более эффективно использовать сам космический корабль. Предполагается, что при старте с Земли коэффициент полезной нагрузки будет составлять не более 25%, а при старте корабля с лунной поверхности этот показатель будет превышать 40%.
Гравитационный маневр
Самый быстрый способ космических путешествий — это использование гравитационного маневра. Этот метод включает использование космическим аппаратом относительного движения (то есть орбиту) и гравитации планеты для изменения пути и скорости. Гравитационные маневры являются крайне полезной техникой космических полетов, особенно при использовании Земли или другой массивной планеты (вроде газового гиганта) для ускорения.
Космический аппарат Mariner 10 первым использовал этот метод, используя гравитационную тягу Венеры для разгона в сторону Меркурия в феврале 1974 года. В 1980-х зонд «Вояджер-1» использовал Сатурн и Юпитер для гравитационных маневров и разгона до 60 000 км/ч с последующим выходом в межзвездное пространство.
Миссии Helios 2, которая началась в 1976 году и должна была исследовать межпланетную среду между 0,3 а. е. и 1 а. е. от Солнца, принадлежит рекорд самой высокой скорости, развитой с помощью гравитационного маневра. На тот момент Helios 1 (запущенному в 1974 году) и Helios 2 принадлежал рекорд самого близкого подхода к Солнцу. Helios 2 был запущен обычной ракетой и выведен на сильно вытянутую орбиту.
Миссия Helios
Из-за большого эксцентриситета (0,54) 190-дневной солнечной орбиты, в перигелии Helios 2 удалось достичь максимальной скорости свыше 240 000 км/ч. Эта орбитальная скорость была развита за счет только лишь гравитационного притяжения Солнца. Технически скорость перигелия Helios 2 не была результатом гравитационного маневра, а максимальной орбитальной скоростью, но аппарат все равно удерживает рекорд самого быстрого искусственного объекта.
Если бы «Вояджер-1» двигался в направлении красного карлика Проксимы Центавра с постоянной скорость в 60 000 км/ч, ему потребовалось бы 76 000 лет (или более 2500 поколений), чтобы преодолеть это расстояние. Но если бы зонд развил рекордную скорость Helios 2 — постоянную скорость в 240 000 км/ч — ему потребовалось бы 19 000 лет (или более 600 поколений), чтобы преодолеть 4,243 светового года. Существенно лучше, хотя и близко не практично.
Пояс астероидов
Поясом астероидов принято называть область, расположенную между Марсом и Юпитером. Этот участок заполнен множеством объектов неправильной формы, называемых астероидами, и стал заметен астрономам еще в начале XIX века. В настоящее время он довольно хорошо изучен.
В поясе астероидов, который иногда называют главным поясом, присутствуют четыре крупнейших астероида:
- Церера;
- Веста;
- Паллада;
- Гелея.
Церера является самым крупным объектом в главном поясе, специалисты относят ее к карликовым планетам: ее диаметр составляет около 950 километров, диаметр остальных астероидов из группы крупнейших не превышает 600 километров.
Размеры остальных частиц пояса астероидов очень отличаются, а некоторые из них ничтожно малы и являются космической пылью, однако общее их количество более миллиона. При этом даже столь огромное количество объектов не делает пояс заполненным.
Космические аппараты пролетают здесь, никогда не сталкиваясь с астероидами, однако контакт небесных тел между собой происходит здесь довольно часто (учитывая астрономические временные масштабы).
Результат этого столкновения может отличаться в зависимости от скорости астероидов: если скорость высока, может образоваться семейство астероидов из фрагментов столкнувшихся, а при низкой скорости объектов может произойти слияние двух астероидов в один.
Углеродные
Темные астероиды, увидеть на небе их возможно только с помощью телескопа. Из названия понятно, что в их составе преобладает углерод, кроме того, они состоят из минералов и горных пород. Углеродные астероиды преобладают в главном поясе: их доля составляет около 75 % всех объектов. Больше всего их на внешнем крае пояса, по мере удаленности от Солнца их количество значительно снижается.
Силикатные астероиды
Состав этих объектов аналогичен каменным метеоритам, в нем преобладает кремний. Их доля в поясе астероидов составляет около 17 %, наибольшая их концентрация наблюдается в 2 астрономических единицах от Солнца, по мере удаления от звезды их количество снижается. Астероиды обладают умеренной яркостью, среди них есть довольно крупный объект — Эвномия, ее ширина составляет примерно 330 километров.
Железные астероиды
Самая многочисленная группа пояса астероидов. В составе преобладает железо и никель. Обладают умеренной яркостью. Существует предположение, что данные объекты являются остатками металлических ядер астероидов, фрагментированных после удара.